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Abstract

In this paper we investigate the e}ect of a uniform vertical magnetic _eld on the linear growth "and decay# rates of
steady Marangoni convection in a horizontal layer of electrically!conducting ~uid heated from below[ Explicit analytical
expressions for the linear growth rates of both long! and short!wave instability modes are derived for the _rst time[
Numerically!calculated results for the linear growth rates are also presented[ In particular\ we show that the e}ect of
increasing the magnetic _eld strength is always to stabilise the layer by decreasing the growth rates of the unstable
modes[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a total horizontal wave number
Bi Biot number
Bo Bond number
Cr crispation number
d initial thickness of the layer
f magnitude of free surface de~ection
` gravitational acceleration
h heat transfer coe.cient
hz"z# vertical variation of vertical magnetic _eld per!
turbation
H Hartmann number
HÞ initial magnetic _eld strength
k thermal conductivity
M Marangoni number
P0 Prandtl number
P1 magnetic Prandtl number
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s temporal growth rate
t time
T"z# vertical variation of temperature perturbation
w"z# vertical variation of vertical velocity perturbation
x\ y\ z spatial Cartesian coordinates[

Greek symbols
b initial temperature gradient
−g coe.cient of thermal surface tension variation
h electrical resistivity
k thermal di}usivity
m magnetic permeability
n kinematic viscosity of ~uid
r density of ~uid
s electrical conductivity
t9 initial value of surface tension[

Subscript
c critical state[

0[ Introduction

The onset of thermocapillary!driven "Marangoni# con!
vection in a layer of ~uid heated from above or below is
a fundamental model problem for several material pro!
cessing technologies\ most notably semiconductor crystal
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growth from a melt in microgravity conditions where\ as
Schwabe ð0Ł describes\ typically thermocapillary forces
dominate buoyancy forces[

In the absence of a magnetic _eld\ Pearson ð1Ł showed
that thermocapillary e}ects will drive steady Marangoni
convection in a ~uid layer of _nite depth heated from
below provided that the Marangoni number M exceeds
a critical value Mc[ Pearson|s ð1Ł work was restricted to
the limit of strong surface tension in which the free upper
surface is non!deformable[ Scriven and Sternling ð2Ł\
Smith ð3Ł and Takashima ð4Ł extended Pearson|s ð1Ł
analysis to include the e}ect of free!surface deformation
and showed that the onset of steady Marangoni con!
vection can be as either a long!wave "ac � 9# or a short!
wave "ac � O"0## mode\ where ac is the critical wave
number[

In many practical applications "such as crystal growth#
the onset of convection is undesirable\ and as a conse!
quence there has been considerable interest in under!
standing various additional physical mechanisms for
delaying\ or possibly eliminating altogether\ the onset of
convection[ In this paper we shall be concerned with one
such mechanism\ namely an externally!imposed uniform
vertical magnetic _eld[

The e}ect of a uniform vertical magnetic _eld on the
onset of Marangoni convection in a horizontal layer of
electrically!conducting ~uid heated from below was _rst
addressed by Nield ð5Ł[ Nield ð5Ł studied the onset of
steady Marangoni convection in the case of a non!
deformable free surface and showed that increasing the
magnetic _eld strength has the stabilising e}ect of mon!
otonically increasing the critical Marangoni number for
the onset of convection[ Subsequently Maekawa and
Tanasawa ð6Ł studied the same problem with an inclined
magnetic _eld and concluded that only the vertical com!
ponent of the magnetic _eld has any e}ect on the critical
Marangoni number[ In a series of papers Sarma ð7Ð02Ł
analysed the e}ect of both uniform rotation of the layer
and a uniform vertical magnetic _eld on the onset of
steady Marangoni convection in a horizontal ~uid layer
with a deformable free surface for a variety of com!
binations of thermal and magnetic boundary conditions[
Unfortunately\ he used an incorrect normal stress bound!
ary condition at the free surface in his analysis\ and so
all his results for situations with a non!zero magnetic
_eld and a deformable free surface are incorrect[ Wilson
ð03Ð05Ł obtained the correct form of this boundary con!

0 In contrast\ when the layer is heated from above Takashima
ð07Ł showed that in the absence of a magnetic _eld convection
only occurs when the free surface is deformable and that the
preferred mode of convection is always oscillatory[ Nitschke et
al[ ð08Ł and Wilson ð03\ 19Ł studied the e}ect of a magnetic _eld
on the onset of convection in this case[

dition and used it to give a comprehensive description of
the onset of steady convection in the presence of a mag!
netic _eld[ Speci_cally\ Wilson ð03Ð05Ł showed that the
e}ect of increasing the magnetic _eld strength is always
a stabilising one but\ in contrast to the results in the case
of a non!deformable free surface\ an arbitrarily large
magnetic _eld cannot stabilise all disturbance when the
free surface is deformable[ The spatial structure of the
convection in the limit of large magnetic _eld strength
was subsequently examined by Nitschke and Thess ð06Ł[

All these works were concerned with the onset of steady
convection in a layer heated from below[0 In an important
paper\ Kaddame and Lebon ð10Ł re!examined the sim!
plest case of a layer with a non!deformable free surface
and perfectly electrically conducting boundaries in which
the onset of convection is always steady in the absence
of the magnetic _eld[ Kaddame and Lebon ð10Ł dem!
onstrated that in this case there are situations in which
oscillatory convection not only occurs but is actually
preferred to steady convection at the onset of instability[
Unfortunately\ Kaddame and Lebon|s ð10Ł solution is
not entirely correct and so their results should be treated
with some caution[ However\ this problem was recently
re!examined by Hashim and Wilson ð11Ł who determined
the regions of P0−P1−H parameter space where oscil!
latory convection is preferred to steady convection[ In
particular\ Hashim and Wilson ð11Ł con_rmed Kaddame
and Lebon|s ð10Ł conclusion that oscillatory Marangoni
convection is only possible if P0 ³ P1\ where P0 and P1

are the Prandtl number and magnetic Prandtl number\
respectively[ However\ in most practical situations
P0 Ł P1 and so the onset of convection will normally be
steady as assumed by the earlier authors[

All of the works described above concentrated on the
determination of the marginal stability curves for the
onset of convection[ There has been much less work on
the temporal growth "and decay# rates of the instability[
Regnier and Lebon ð12Ł recently investigated the linear
growth rates for both long! and short!wave modes for the
pure Marangoni problem near the onset of convection[ In
particular\ Regnier and Lebon ð12Ł showed that free!
surface deformation has a strong in~uence on the growth
rates of the long!wave mode but has only a weak e}ect on
the growth rates of the short!wave mode[ Subsequently\
Wilson and Thess ð13Ł studied the linear growth rates of
long!wave modes without the restriction of near critical
conditions for the coupled Be�nardÐMarangoni problem
including the e}ects of buoyancy in the bulk of the ~uid[
These analytical results were found to be in good agree!
ment with the experimental observations of VanHook et
al[ ð14Ł[ There has been no work so far on the e}ect of a
magnetic _eld on the linear growth rates of either the
long! or short!wave modes[

In this paper we derive for the _rst time explicit ana!
lytical expressions for the linear growth "and decay# rates
of both the long! and short!wave modes of Marangoni
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convection in a horizontal layer of electrically!conducting
~uid heated from below subject to a uniform vertical
magnetic _eld[ We also present numerically!calculated
results for the linear growth rates[ This work is a natural
extension of previous studies which concentrated on the
e}ect of a magnetic _eld on the marginal stability curves\
and the recent work by Regnier and Lebon ð12Ł and
Wilson and Thess ð13Ł on the linear growth rates in the
absence of magnetic e}ects[

1[ Linearised problem

The linearised equations and boundary conditions gov!
erning the onset of Marangoni convection in an initially
quiescent horizontal layer of electrically!conducting ~uid
with a deformable free surface subject to a uniform ver!
tical magnetic _eld and a uniform vertical temperature
gradient are given by

"D1−a1−sP0#T¦w � 9 "0#

"D1−a1−sP1#hz¦Dw � 9 "1#

"D1−a1#ð"D1−a1−s#w¦H1DhzŁ � 9 "2#

subject to

sf−w � 9 "3#

P0Cr ð"D1−2a1−H1−s#Dw

¦sP1H
1hzŁ−a1"a1¦Bo# f � 9 "4#

P0"D1¦a1#w¦a1M"P0T−f # � 9 "5#

hz � 9 "6#

P0DT¦Bi"P0T−f # � 9 "7#

evaluated on the undisturbed position of the upper free
surface z � 0\ and

w � 9 "8#

Dw � 9 "09#

hz � 9 "00#

evaluated on the lower rigid boundary z � 9\ together
with either

T � 9 "01#

on z � 9 if the boundary is conducting to temperature
perturbations or

DT � 9 "02#

on z � 9 if the boundary is insulating to temperature
perturbations[ The variables w�w"z#\ T�T"z#\ hz�hz"z#
and f denote the vertical variation of the z!component of
the velocity\ temperature and the z!component of the
magnetic _eld\ and the magnitude of the free surface
de~ection of the linear perturbation to the basic state
with total wave number a in the horizontal xÐy plane and
complex growth rate s[ The operator D � d:dz denotes
di}erentiation with respect to the vertical coordinate z[

We have non!dimensionalised the variables using the
scales d\ d1:n\ n:d\ bdn:k\ and mHÞ:h for length\ time\
velocity\ temperature\ and magnetic _eld\ respectively[
The non!dimensional groups appearing in the problem
are the Marangoni number M � gbd1:rnk\ the crispation
number Cr � rnk:t9d\ the Hartmann number "the square
root of the Chandrasekhar number# H � mHÞd"s:rn#0:1\
the Biot number Bi�hd:k\ the Bond number Bo�r`d1:t9\
the Prandtl number P0 � n:k and the magnetic Prandtl
number P1 � n:h\ where the symbols `\ b\ t9\ −g\ r\ n\ h\
k\ k\ m\ s\ h and HÞ are de_ned in the Nomenclature
section[ Note that this choice of scaling was made for
consistency with the work of Kaddame and Lebon ð10Ł
and Hashim and Wilson ð11Ł\ but di}ers from that of
Sarma ð7Ð02Ł and Wilson ð03Ð05\ 19Ł who used the
notation Pr � P0 for the Prandtl number and Pm � P0:P1

for an alternative magnetic Prandtl number[ However\
the latter formulation can easily be recovered by multi!
plying the present time\ temperature and magnetic _eld
variables by 0:P0\ P0 and P1\ respectively[

Note that we can use equation "1# to rewrite equation
"2# in the form

ð"D1−a1#"D1−a1−s#−H1D1Łw¦sP1H
1Dhz � 9[

"03#

Extensive use has been made of the symbolic algebra
package MAPLE V "Release 2# running on a SUN
SPARCstation 0¦ to carry out much of the tedious
algebraic manipulations needed in the course of _nding
analytical solutions[ In this paper we shall mostly con!
sider the case P1 � 9\ in which case the magnetic _eld hz

can be eliminated from the problem and hence the two
boundary conditions on hz ð"6# and "00#Ł are therefore
not required[

2[ Growth rates of the long!wave "ac � 9# mode

In the absence of a useful closed form analytical solu!
tion to the full linear!stability problem we can obtain
analytical expressions for the growth rates of the steady
long wave "ac � 9# modes in the case P1 � 9[ Following
Wilson and Thess ð13Ł we seek asymptotic solutions for
w\ T and s in the forms

w � w9"z#¦a1w0"z#¦O"a3# "04#

T �
0

a1
T9"z#¦T0"z#¦O"a1# "05#

s � s9¦a1s0¦a3s1¦O"a5# "06#

in the long!wave limit a : 9[ Clearly if s9 � 9 then the
leading order solutions of equations "0# and "03# take the
form

w9 � A0¦A1z¦A2 ej0z¦A3 e−j0 "07#
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T9 � A4 ej1z¦A5 e−j1z "08#

while in the special case s9 � 9 the solutions are simply

w9 � A0¦A1z¦A2 ej2z¦A3 e−j2z "19#

T9 � A4¦A5z "10#

where for convenience we have written j1
0 � s9¦H1\

j1
1 � s9P0 and j2 � H and Ai for i � 0\ [ [ [ \ 5 are arbitrary

constants[

2[0[ Conductin` case

If Cr � 9 then the free surface is non!deformable[ Sub!
stituting the expressions for w9 and T9 given in equations
"07# and "08# into the leading order versions of the
boundary conditions yields the appropriate solutions for
A0\ [ [ [ \ A5 and the equation

"j0 cosh j0−sinh j0#"j1 cosh j1¦Bi sinh j1# � 9 "11#

and so either s9 � −"j1¦H1# where j is a root of
tan j � j "in which case T9 0 9# or s9 � −j1:P0 where j

is a root of j cos j¦Bi sin j � 9[ The special case s9 � 9
yields only the trivial solution and so in all cases we have
s9 ³ 9 and all the long!wave modes are stable as expected[

If Cr � 9 then the free surface is deformable[ Using the
expression for w9 and T9 given in equations "07# and "08#
yields

cosh j0"j1 cosh j1¦Bi sinh j1# � 9 "12#

and so either s9 � −"j1¦H1# where j is a root of
cos j � 9 "in which case again T9 0 9# or s9 � −j1:P0

where j is a root of j cos j¦Bi sin j � 9 as before[ Once
again all these modes have s9 ³ 9 and so are stable[

In addition the special case s9 � 9 now also yields a
non!trivial solution[ Using the expressions for w9 and T9

given in equations "19# and "10# we obtain

s0 �
MCrH"C−0#−Bo"HC−S#"0¦Bi#

P0CrH
2C"0¦Bi#

"13#

where for convenience we have written S � sinhH and
C � coshH[ These long!wave modes will either grow or
decay depending on whether M × M9 or M ³ M9\ where
M9 is the value of the marginal stability curve at a � 9[
Setting s0 � 9 we recover the leading order behaviour of
the steady marginal stability curve in the limit a : 9
obtained by Wilson ð03Ł\

M9 �
Bo"S−HC#"0¦Bi#

CrH"0−C#
[ "14#

In the limit H : 9 we obtain

s0 ½
2MCr−1Bo"0¦Bi#

5P0Cr "0¦Bi#
"15#

in agreement with the result of Wilson and Thess ð13Ł
for the non!magnetic case\ while in the limit H : � we
obtain

s0 ½
MCr−B9"0¦Bi#

P0Cr "0¦Bi#
0

H1
[ "16#

2[1[ Insulatin` case

As in the conducting case there are stable long!wave
modes and these are given by s9 � −"j1¦H1# where j is
a root of tan j � j if Cr � 9 or cos j � 9 if Cr � 9 "in
both cases with T9 0 9# and s9 � −j1:P0 where j is a
root of j sin j−Bi cos j � 9[

In addition the special case s9 � 9 yields a non!trivial
solution when Bi � 9\ and using the expressions for w9

and T9 given in equations "19# and "10# we obtain

1H1 ð"S−HC#Bo¦"M"C−0#−P0s0H
1C#HCrŁA3

¦ð"S¦C−H−0#Bo−P0s0CrH
2ŁMA4 � 9[ "17#

In order to determine s0 it is necessary to proceed to next
order in a1 and using the appropriate expressions for w0

and T0 yields

ð"3"C−HS−0#¦H1"C¦0##Bo

¦"H−S#1P0s0H
2CrŁA3

−ð"S¦C−H−0#Bo−P0s0CrH
2Ł

×"0¦P0s0#HA4 � 9 "18#

and so s0 satis_es the quadratic equation

3H5CrCP1
0s

1
0

−H2 ð−3"S−HC#CrM−3H2CrC

¦3"S−HC#BoŁP0s0−ð"7C−7HS

¦1H1C−7¦1H1#Bo

¦3CrH
3"C−0#ŁM−3H2 Bo"S−HC# � 9 "29#

which holds for all values of Cr and Bo[ In the special
case Cr � 9 equation "29# reduces to

s0 �
ð"C¦0#H1−3HS¦3C−3ŁM¦1H2"S−HC#

1H2P0"HC−S#
[

"20#

Setting s0 � 9 we recover the leading behaviour of the
marginal stability curve obtained by Wilson ð05Ł\

M9 �
1H2"HC−S#Bo

ðH1"0¦C#−3"HS−C¦0#ŁBo¦1H3"C−0#Cr

"21#

while in the limit H : � we obtain s0 ½ −0:P0[
The special case s9 � 9 also yields a non!trivial solution

when Bi � 9 if Cr � 9[ If Bo � 9 then solving for w9 and
T9 gives w9 0 9 and s0 � 9[ In order to determine s1 it is
again necessary to proceed to next order in a1\ and using
the appropriate solutions for w0 and T0 we obtain

s1 �
MCrH"C−0#¦Bi"S−HC#

H2P0Cr Bi C
[ "22#
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Setting s1 � 9 we recover the leading order behaviour of
the steady marginal curve in the limit a : 9 obtained by
Wilson ð05Ł\

M9 �
Bi"HC−S#
CrH"C−0#

"23#

and in the limit H : � we obtain

s1 ½
MCr−Bi
P0Cr Bi

0

H1
[ "24#

If Bo � 9 then using the expressions for w9 and T9 given
in equations "19# and "10# we obtain

s0 �
Bo"S−HC#

H2P0CrC
[ "25#

In the limit H : � we obtain

s0 ½ −
Bo

P0Cr

0

H1
[ "26#

Note that in this case s0 ³ 9 for all values of H − 9 and
so all long!wave modes are always stable as expected[

In all cases we recover the corresponding expressions
obtained by Wilson and Thess ð13Ł for the non!magnetic
problem in the limit H : 9[

3[ Growth rates of the short!wave "ac � O"0## modes

In this section we analyse the e}ect of the magnetic
_eld on the linear growth rate of the steady short!wave
modes[ Regnier and Lebon ð12Ł showed that in the
absence of magnetic e}ects free!surface deformation has
only a weak e}ect on the growth rates of these modes\
and so we choose to study the simplest case of a non!
deformable free surface "Cr � 9#[ Again as in Section 2
we set P1 � 9 and consider only the case when the lower
boundary is conducting to temperature perturbations
"T � 9 on z � 9#[ Recall that in this case the work of
Kaddame and Lebon ð10Ł and Hashim and Wilson ð11Ł
shows that the onset of convection will always be steady[

In this case the governing equations and boundary
conditions become

ð"D1−a1#"D1−a1−s#−H1D1Łw � 9 "27#

"D1−a1−sP0#T¦w � 9 "28#

subject to

w � 9 "39#

"D1¦a1#w¦a1MT � 9 "30#

DT¦Bi T � 9 "31#

on z � 0\ and

w � 9 "32#

Dw � 9 "33#

T � 9 "34#

on z � 9[

In order to investigate the linear growth rates s near
the instability threshold s � 9 we follow the approach of
Regnier and Lebon ð12Ł by seeking asymptotic solutions
for w\ T and s in the forms

w � w9¦w0o¦O"o1# "35#

T � T9¦T0o¦O"o1# "36#

s � s0o¦O"o1# "37#

in the limit o : 9\ where the small parameter
o �"M−Mc#:Mc measures the di}erence between the
Marangoni number\ M\ and the critical value of the Mar!
angoni number for the onset of steady convection\ Mc[

3[0[ Leadin`!order problem

At leading!order in o the governing equations and
boundary conditions are

ð"D1−a1#1−H1D1Łw9 � 9 "38#

"D1−a1#T9¦w9 � 9 "49#

subject to

w9 � 9 "40#

"D1¦a1#w9¦a1McT9 � 9 "41#

DT9¦Bi T9 � 9 "42#

on z � 0 and

w9 � 9 "43#

Dw9 � 9 "44#

T9 � 9 "45#

on z � 9[ The leading order problem may be written as

LW9 � 9 "46#

where

L � &
"D1−a1#1−H1D1 9 9

0 "D1−a1# 9

D1 =z�0 9 a1Mc
'\

W9 � &
w9

T9

T9 =z�0
' "47#

subject to the boundary conditions "40#\ "42#Ð"45#[ Note
that the boundary condition involving Mc has been
included in the operator L[ Solving the system "46# sub!
ject to the remaining boundary conditions "40#\ "42#Ð"45#
yields w9\ T9 and the steady marginal stability curve
studied by earlier authors\ Mc[ Since these expressions are
rather lengthy they are not given here for brevity[ Clearly
we have to go to the next order in o to determine s0[
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3[1[ First!order problem

At _rst!order in o the governing equations and bound!
ary conditions are

"D1−a1#1w0−H1D1w0−s0"D1−a1#w9 � 9 "48#

"D1−a1#T0¦w0−s0P0T9 � 9 "59#

subject to

w0 � 9 "50#

"D1¦a1#w0¦a1McT0¦a1McT9 � 9 "51#

DT0¦Bi T0 � 9 "52#

on z � 0 and

w0 � 9 "53#

Dw0 � 9 "54#

T0 � 9 "55#

on z � 9[ The _rst!order problem may be written as

LW0 � F "56#

where

W0 � &
w0

T0

T0 =z�0
'\ F � &

s0"D1−a1#w9

s0P0T9

−a1McT9 =z�0

' "57#

and the operator L is given in "47#\ subject to the bound!
ary conditions "50#\ "52#Ð"55#[

3[2[ First!order adjoint problem

In principle\ we can solve the _rst!order problem for
s0 directly\ but since the algebraic manipulations involved
are too complicated even for MAPLE V\ we instead
obtain s0 indirectly by solving the _rst!order adjoint prob!
lem[ Non!trivial solutions of the system "56#\ subject to
the boundary conditions "50#\ "52#Ð"55#\ exist if and only
if the Fredholm Alternative "see\ for example\ Friedman
ð15Ł# holds\ i[e[ if F is orthogonal to any solution of the
homogeneous _rst!order adjoint problem

L�W�0 � 9 "58#

where the adjoint operator L� is de_ned by

ðW�0\ LW0Ł � ðW0\ L�W�0Ł "69#

and ð=\ =Ł denotes the scalar product

ða\ bŁ � g
0

9

"a0b0¦a1b1# dz¦a2b2 =z�0[ "60#

Integration by parts of the left!hand side of equation "69#
and use of the boundary conditions "50#\ "52#Ð"55# shows
that if we take the adjoint solution to be

W�0 � &
w�0
T�0

Dw�0 =z�0
' "61#

then L� is given by

L� � &
"D1−a1#1−H1D1 0 9

9 "D1−a1# 9

9 −"D¦Bi# =z�0 a1Mc

'
"62#

with the adjoint boundary equations

w�0 � 9 "63#

D1w�0 � 9 "64#

on z � 0 and

w�0 � 9 "65#

Dw�0 � 9 "66#

T�0 � 9 "67#

on z � 9[ The orthogonality condition is expressed as

ðF\ W�0Ł � 9 "68#

from which we obtain

t9 � s−0
0 �

g
0

9

"ðD1−a1#w9Łw�0¦P0T9T�0# dz

a1McT9 =z�0Dw�0 =z�0

"79#

where t9 is called the relaxation time[ In what follows we
plot t9:P0 "i[e[ the relaxation time measured in units of
d1:k# rather than t9 "i[e[ the relaxation time measured in
units of d1:n# for consistency with the earlier work of
Regnier and Lebon ð12Ł[ In principle we can evaluate
t9 analytically but the resulting expression is extremely
lengthy and so is not repeated here[ We can\ however\
evaluate t9 numerically[ Note that in the special case
H � 9 we recover the corresponding results of Regnier
and Lebon ð12Ł for the non!magnetic problem[

Figures 0"a# and "b# show the numerically!calculated
values of t9:P0 plotted as a function of P0 in the case
Bi � 9 for a range of values of H[ As shown in Figs 0"a#
and "b#\ the e}ect of increasing P0 is to increase the
relaxation time t9[ Increasing H for a _xed value of P0

has the e}ect of decreasing t9[
Figure 1 shows the numerically!calculated values of

t9:P0 plotted as a function of H in the case Bi � 9 for a
range of values of P0[ For a _xed value of P0\ increasing
H has the e}ect of decreasing t9\ and for a _xed value of
H\ increasing P0 has the e}ect of increasing t9[

Figure 2 shows the numerically!calculated values of
t9:P0 plotted as a function of Bi in the case P0 � 09 for a
range of values of H[ As Fig[ 2 shows for a _xed value of
H\ t9 is a decreasing function of Bi[ For a _xed value of
Bi\ t9 is a decreasing function of H[
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Fig[ 0[ Numerically!calculated relaxation time t9:P0 of the short!wave mode as a function of P0 in the case Cr � 9 and Bi � 9 for a
range of values of H] "a# large P0^ and "b# small P0[

4[ Numerically!calculated growth rates

In general\ in order to calculate the linear growth rates
we have to turn to numerical computation to evaluate
the complex determinant of the coe.cients of the eight
unknowns in the eight linear equations obtained by sub!
stituting the general solution of the governing equations
"0#Ð"2# into the boundary conditions "3#Ð"02#[ This task
was performed using NAG routine F92ADF incor!
porated into a FORTRAN program running on SUN
SPARCstation 0¦[

Figure 3 shows numerically!calculated values of Re"s#\
the real part of s\ in the conducting case plotted as func!
tions of a for a range of values of H in the case M � 499\

Cr � 9\ Bi � 9\ P0 � 099 and P1 � 0[ Note that in all the
cases shown s is purely real[ In particular\ the results in
Fig[ 3 show that increasing H stabilises the layer both by
decreasing the range of unstable modes for a given value
of the Marangoni number and by decreasing the growth
rates of the unstable modes[

5[ Conclusions

In this paper we derived for the _rst time explicit ana!
lytical expressions for the linear growth "and decay# rates
of both the long! and short!wave modes of Marangoni
convection in a horizontal layer of electrically!conducting
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Fig[ 1[ Numerically!calculated relaxation time t9:P0 of the short!wave mode as a function of H in the case Cr � 9\ and Bi � 9 for a
range of values of P0[

Fig[ 2[ Numerically!calculated relaxation time t9:P0 of the short!wave mode as a function of Bi in the case Cr � 9 and P0 � 09 for a
range of values of H[

Fig[ 3[ Numerically!calculated values of Re"s# in the conducting case plotted as functions of a for a range of values of H in the case
M � 499\ Cr � 9\ Bi � 9\ P0 � 099 and P1 � 0[ In all the cases shown the imaginary part of s is identically zero[
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~uid heated from below subject to a uniform vertical
magnetic _eld[ We also presented numerically!calculated
results for the linear growth rates[ In particular\ we
showed that the e}ect of increasing H is always to stabil!
ise the layer by decreasing the growth rates of the unstable
modes[
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